Designing a biogas plant – which factors are relvevant and how can we measure them? René Casaretto – NutriFair 2019 <u>rene.casaretto@hs-flensburg.de</u>

Table of content

- CHAPTER 1: Basics
- CHAPTER 2: Designing a Plant and Measuring the Energy Efficiency
- CHAPTER 3: Impressions

CHAPTER 1: Basics

Basic parameters for designing

- oLR = Organic load rate
- HRT = Hydraulic retention time
- DM = Dry Material
- oDM = organic Dry Material
- COD = Chemical Oxygen Demand
- Gas Production Rate

•
$$olR = \frac{\dot{m} * c}{V_R * 100} [kg \ oDM * m^{-3} * d^{-1}]$$

•
$$HRT = \frac{V_R}{\dot{V}}$$
 [d]

- DM = Drying at 105°C
- oDM = Organic Material after carbonization at 550°C
- COD = Standard Water parameter
- Gas production Rate = Based on Tests or literature

Designing – A finding process

- What can be generally said?
- - Each biogas plant have to be uniqe!
- Design depends on the region, input materials and availability, gas using, selling price of heat and power etc.
- Fermentation residues handling is a separation in solid and liquid phase necessary? Can we upgrade and sell them? Do we have to take care of pathogenes? Will they used as fertilizer on the fields?

Designing – A finding proces

- How can we reach information about the input materials?
- - Literature?
- Batch fermentation tests?
- - DM, oDM, FoDM calculations?
- - COD Value?
- - Heating Value, TOC, Elementary Components?
- How reliable are these possibilities?
- Literature values are middled values of hundreds of fermentation tests But are they corresponding with your substrate?
- Batch fermentation test Is an easy and cheap way to reach information about the gas production – BUT: Depends on the Inoculum...

Design – A finding process

- DM, oDM and FoDM calculations are mainly based on historical observations and empirically calculated correction factors
- - COD test mainly used for waste water. Problem with solid materials...
- - Heating value: Easy and cheap way to determine the total energy content. BUT: Currently no information about the digestability...
- TOC: Using measured data sets, system boundaries can include the biogas plant as a whole, single samplings not representative, no determination for the degradable energy is possible
- Elementary compounds: Using historical data and emipric defined factors
- -> In the end you have to decide and you need to find reliable results for the gas production. Most common are Batch-fermentation tests and you make a discount (10 – 15% off)

CHAPTER 2 – Designing a Plant

Source: www.bekon.eu

Batch garage fermenters

- + high DM content possible
- + easy to handle and low cost design
- + easy to maintain
- low and non constant gas production
- - no pumpable materials
- - high emissions

Source: FNR Handreichung Biogas 2013

Complete Stirred Tank reaktor

- + Easy to handle
- + easy to maintain
- + suitable for the most materials (pumpable)
- - no defined retention time
- - sinking and swimming layers
- no separation between the biogas phases

Source: FNR Handreichung Biogas 2013

Plug Flow Fermenter

- + High DM content possible (pumpable)
- + easy and cheap to build
- + no sinking and swimming layers
- + separation of gas production phases
- - Recirculation with bacterias
- - maintenance hard to realise

Source:

https://www.google.de/search?q=anaerobic+baffled+reactor&source=lnms&tbm=isch&s a=X&ved=0ahUKEwjJm8vhk_7cAhUQhxoKHVGYCxYQ_AUICigB&biw=1224&bih=872#imgr c=c0Xz25-36R73NM:

Anaerobic baffled reactor

- + No moving parts (stirrer etc.)
- + No maintanance necessary
- + Seperated gas production phases
- - Sinking layers
- - Only for low viscouse mediums

- What can be generally said?
- Depending on the input materials the fermenter type have to been chosen
- Each fermenter type has its advantages and disadvantages
- - Maintenance, Gas losses, price, Heat demand etc.
- Overall conclusion: Before building up a fermenter check your input materials!

Time series analysis of a currently operating plant for measuring the efficiency

- Time series analysis allows to show the influence of:
- process management
- - quality changes of input materials
- - repowering initiatives pretreatment etc.
- For time series analysis it is necessary to know about:
- - input materials (quality and quantity)
- - output material (quality and quantity)
- constantly delivered samples of the materials (in min. for one hydraulic retention time of the analysed plant)

Results of a 1 year time series analysis

average efficiency	Min.	Max.	Standard deviation
82,22%	78,95%	84,84%	1,71%

Correction factors for time series analysis

- For correct calculation of the efficiency following correction factors are necessary:
- - mass of Sulphur and Nitrogen of the samples
- - volatile organic substances
- - losses of CHP / Gas Upgrading Module
- - losses of permeation by the roof and concrete
- leachate water of stored biomass; quantity and quality
- - self consumption of bacterias
- - rain water (mass)
- - output material (mass)
- - self consumed electric and heat energy by the plant

Influence of leachate- and rain water

Month	Input- Material	Rain-Water	Leachate- Water	Retention time F1 and F2	Retention time of fermenters 1-3	Total retention time of fermentative system
May	2.046,52 to	349 m³	0 m³	38,20 d	70,03 d	101,86 d
Jun	2.267,39 to	379 m³	0 m³	34,57 d	63,38 d	92,19 d
Jul	1.978,02 to	496 m³	0 m³	36,99 d	67,81 d	98,64 d
Aug	1.898,21 to	496 m³	0 m³	38,22 d	70,07 d	101,92 d
Sep	2.535,64 to	490 m³	466 m³	26,21 d	48,05 d	69,89 d
Oct	2.439,16 to	490 m³	466 m³	26,95 d	49,42 d	71,88 d
Nov	2.327,09 to	551 m³	0 m³	31,79 d	58,29 d	84,78 d
Dec	2.196,90 to	477 m³	0 m³	34,22 d	62,73 d	91,24 d
Jan	2.038,27 to	428 m³	0 m³	37,09 d	68,01 d	98,92 d
Feb	2.300,03 to	257 m³	0 m³	35,78 d	65,60 d	95,42 d
Mar	2.356,08 to	337 m³	0 m³	33,98 d	62,30 d	90,62 d
Apr	2.351,86 to	306 m³	0 m³	34,43 d	63,11 d	91,80 d

average retention time	Min.	Max.
90,76 d	69,89 d	101,92 d

Conclusions – Measuring the energy efficiency

- Complete mass and energy balances are not possible for now, due to the named correction factors
- To create these balances, general correction factors for each type of biogas plants have to be found
- The method is only valid for biogas plants, using energy crops and manure as input. It is not valid for waste water treatment plants and for slaughterhouse waste
- An extension of the method can be the calculation of degradable energy to show the residual-gas-potential of the used input materials
- To see the influence of input material changings and changing of the process management, the time series should be roughly three times of the hydraulic retention time

EUROPEAN UNION

Large Scale Bioenergy Lab 2

Large Scale Bioenergy Lab 2 is funded by Interreg Deutschland-Denmark with funds from the European Regional Development Fund.

Read more about Interreg Deutschland Denmark on www.interreg5a.eu